Study Explores Uncertainties in Flood Risk Estimates

Results show a need to revise existing methods for estimating flood risk

Flood frequency analysis is a technique used to estimate flood risk, providing statistics such as the “100-year flood” or “500-year flood” that are critical to infrastructure design, dam safety analysis, and flood mapping in flood-prone areas. But the method used to calculate these flood frequencies is due for an update, according to a new study by scientists from DRI, University of Wisconsin-Madison, and Colorado State University 

Floods, even in a single watershed, are known to be caused by a variety of sources, including  rainfall, snowmelt, or “rain-on-snow” events in which rain falls on existing snowpack. However, flood frequencies have traditionally been estimated under the assumption these flood “drivers,” or root causes, are unimportant. 

In a new open-access paper in Geophysical Research Letters, a team led by Guo Yu, Ph.D., of DRI examined the most common drivers (rainfall, snowmelt, and rain-on-snow events) of historic floods for 308 watersheds in the Western U.S., and investigated the impact of different flood types on the resulting flood frequencies. 

Their findings showed that most (64 percent) watersheds frequently experienced two or three flood types throughout the study period, and that rainfall-driven floods, including rain-on-snow, tended to be substantially larger than snowmelt floods across watershed sizes.   

Further analysis showed that by neglecting the unique roles of each flood type, conventional methods for generating flood frequency estimates tended to result in under-estimation of flood frequency at more than half of sites, especially at the 100-year flood and beyond. 

“In practice, the role of different mechanisms has often been ignored in deriving the flood frequencies,” said Yu, a Maki postdoctoral research associate at DRI. “This is partly due to the lack of physics-based understanding of historic floods. In this study, we showed that neglecting such information can result in uncertainties in estimated flood frequencies which are critical for infrastructure.” 

The study findings have important implications for estimating flood frequencies into the future, as climate change pushes conditions in snowmelt-dominated watersheds toward increased rainfall. 

“How the 100-year flood will evolve in the future due to climate change is one of the most important unanswered questions in water resources management,” said Wright, an associate professor in Civil and Environmental Engineering at University of Wisconsin-Madison. “To answer it, we need to focus on the fundamental science of how the water cycle, including extreme rainstorms and snow dynamics, are and will continue to change in a warming climate.” 

The study team hopes that this research is useful to engineers, who rely on accurate estimates of flood frequencies when building bridges and other infrastructure. Although many engineers realize that there is a problem with the conventional way of estimating flood frequencies, this study provides new insights into the level of inaccuracy that results.  

“This study shows that taking into account different physical processes can improve flood risk assessment,” said Frances Davenport, Ph.D., postdoctoral research fellow at Colorado State University. “Importantly, this result suggests both a need and opportunity to develop new methods of flood frequency assessment that will more accurately reflect flood risk in a warming climate.” 

Truckee River after storm

Above: The Truckee River in Reno, Nev. during high flow conditions after a storm in late January, 2016. Credit: Kelsey Fitzgerald/DRI.

More information: 

The full study, Diverse Physical Processes Drive Upper-Tail Flood Quantiles in the US Mountain West, is available from Geophysical Research Letters: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL098855  

This project was funded by the DRI’s Maki Postdoctoral fellowship, U.S. National Science Foundation Hydrologic Sciences Program (award number EAR-1749638), and Stanford University. Study authors included Guo Yu (DRI/University of Wisconsin-Madison), Daniel Wright (University of Wisconsin-Madison), and Frances Davenport (Stanford University and Colorado State University).  

### 

About DRI 

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu. 

About Colorado State University’s Walter Scott, Jr. College of Engineering 

Colorado State is one of the nation’s top public research universities with about 33,000 students and $447 million in annual research funding. The Walter Scott, Jr. College of Engineering at CSU prepares students to solve global challenges to shape a better world through research, education, innovation, and outreach. In addition to a top-ranked graduate program in atmospheric science, the college conducts cutting-edge, interdisciplinary research that provides students hands-on learning in biological, biomedical, chemical, civil, computer, electrical, environmental, mechanical, and systems engineering. The college attracts about $80 million in annual research dollars, placing it in the top tier of public institutions of similar size, and is a campus leader in patents, startups, and technology transfer. For more information, please visit www.engr.colostate.edu. 

You May Also Like…

Scientists Find the First Ice Core From the European Alps That Dates Back to the Last Ice Age

Scientists Find the First Ice Core From the European Alps That Dates Back to the Last Ice Age

The new study, published in the June issue of PNAS Nexus, examines a 40-meter long ice core from Mont Blanc’s Dôme du Goûter. Using radiocarbon dating techniques, the research team found that the glacier provides an intact record of aerosols and climate dating back at least 12,000 years. Aerosols are small droplets and particles in the air such as desert dust, sea salts, sulfur from volcanic eruptions, soot from forest fires, as well as pollutants and other emissions from human activities.

A New, Detailed Analysis of the Benefits and Trade-offs of Urban Street Trees in Las Vegas

A New, Detailed Analysis of the Benefits and Trade-offs of Urban Street Trees in Las Vegas

Earth is hotter than it has been in 125,000 years, scientists say, and Las Vegas continues to break temperature records. Planting and preserving the city’s street trees is one method that brings many benefits, from the cool air of their shade to their ability to store carbon. Now, a new study takes a deeper look at just how much trees can offer Sin City, as well as the water tradeoffs inherent in growing trees in a desert.

Desert Lichen Offers New Evidence for the Possibility of Life on Other Planets

Desert Lichen Offers New Evidence for the Possibility of Life on Other Planets

The question of whether Earth is alone in harboring life has captivated humanity for millennia. In recent years, scientists have turned to Earth-like planets in other solar systems that may show the most promise, but many revolve around stars that emit much stronger solar radiation than our own. Now, a new study offers evidence that life as we know it may be able to thrive on those Earth-like exoplanets.

Share This