New USDA grant to support Diné (Navajo) and Hopi Teachers in Placed-Based STEM curriculum

Reno, Nev. (July 14, 2020)Meghan Collins, M.S., Education Lead for the Native Waters on Arid Lands (NWAL) project and Assistant Research Scientist at the Desert Research Institute (DRI) in Reno has received a $100k grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture (USDA-NIFA) to develop a STEM curriculum with Diné (Navajo) and Hopi communities.

With this funding, Collins, Karletta Chief, Ph.D. (University of Arizona), Kyle Bocinsky, Ph.D. (DRI/Crow Canyon Archaeological Center), and several other members of the NWAL team will work with teachers serving Indigenous communities to develop and adapt STEM curriculum to place-based contexts. The project, called “Teaching Native Waters,” will host in-depth, yearlong professional development experiences to 20 middle and high school teachers serving Indigenous students in the Diné (Navajo) and Hopi Nations.

“This project builds on opportunities that we identified during the course of the Native Waters on Arid Lands project, where teachers wanted ways to bring STEM curriculum into their classrooms for the benefit of young and future generations,” said Collins. “We are thrilled to be able to continue this important work with new funding from USDA-NIFA, and help make science from the NWAL project actionable in K-12 classrooms.”

The long-term goal of “Teaching Native Waters” is to include more Native American students in the science, technology, engineering, and math (STEM) fields. This project will help to address issues of diversity in STEM and important gaps in professional development for teachers serving rural students.

This grant was one of four awards given out through USDA-NIFA’s Women and Minorities in Science, Technology, Engineering and Mathematics Fields program (WAMS). WAMS supports research, education/teaching, and extension projects to increase participation by women and underrepresented minorities from rural areas in science technology engineering and math.

This project is expected to begin in August 2020 and run through July 2022. Additional DRI researchers that will be working on the Teaching Native Waters project include NWAL Program Director Maureen McCarthy, Ph.D., and NWAL water quality lead Alexandra Lutz, Ph.D.

The full award announcement is here: https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=R=88821&format=WEBFMT6NT

 

You May Also Like…

Scientists Find the First Ice Core From the European Alps That Dates Back to the Last Ice Age

Scientists Find the First Ice Core From the European Alps That Dates Back to the Last Ice Age

The new study, published in the June issue of PNAS Nexus, examines a 40-meter long ice core from Mont Blanc’s Dôme du Goûter. Using radiocarbon dating techniques, the research team found that the glacier provides an intact record of aerosols and climate dating back at least 12,000 years. Aerosols are small droplets and particles in the air such as desert dust, sea salts, sulfur from volcanic eruptions, soot from forest fires, as well as pollutants and other emissions from human activities.

A New, Detailed Analysis of the Benefits and Trade-offs of Urban Street Trees in Las Vegas

A New, Detailed Analysis of the Benefits and Trade-offs of Urban Street Trees in Las Vegas

Earth is hotter than it has been in 125,000 years, scientists say, and Las Vegas continues to break temperature records. Planting and preserving the city’s street trees is one method that brings many benefits, from the cool air of their shade to their ability to store carbon. Now, a new study takes a deeper look at just how much trees can offer Sin City, as well as the water tradeoffs inherent in growing trees in a desert.

Desert Lichen Offers New Evidence for the Possibility of Life on Other Planets

Desert Lichen Offers New Evidence for the Possibility of Life on Other Planets

The question of whether Earth is alone in harboring life has captivated humanity for millennia. In recent years, scientists have turned to Earth-like planets in other solar systems that may show the most promise, but many revolve around stars that emit much stronger solar radiation than our own. Now, a new study offers evidence that life as we know it may be able to thrive on those Earth-like exoplanets.

Share This