New DRI Study Investigates Formation of Dangerous Compounds by E-cigarettes

Reno, Nev. (July 19, 2021) – Scientists with the Desert Research Institute (DRI) Organic Analytical Laboratory, led by Andrey Khlystov, Ph.D., have been awarded a $1.5M grant from the National Institutes of Health (NIH) to study the formation of dangerous compounds by electronic cigarettes (e-cigarettes).

E-cigarettes have grown in popularity in recent years, and emit nicotine and other harmful compounds including formaldehyde, a dangerous human carcinogen. However, the production of these chemicals may differ across different e-cigarette devices, use patterns, and e-liquid (“juice”) formations – and scientists currently lack a thorough understanding of how these chemicals form and how to best test for their presence.

DRI’s study, which will run for three years, will test popular e-cigarette types and devices under a wide range of use patterns to resolve questions about harmful and potentially harmful substances produced by e-cigarettes. Among other things, the research team will investigate interactions between flavoring compounds and coils at different ages, temperatures, and e-liquid formations, and how different combinations of power, puff topography, and e-liquid viscosity affect emissions.

“This project will identify the most important parameters underlying the formation of harmful and potentially harmful constituents produced by e-cigarettes – and thus help inform the public and policymakers regarding health safety of different e-cigarette devices and e-liquid formulations,” Khlystov said.

Information gained from this project is needed to advise the public on potential health risks of different devices and configurations, to establish standardized testing protocols, and to inform policymakers on regulating certain e-cigarette designs and/or e-liquid constituents.

Additional Information:

###

About DRI:
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit 
www.dri.edu.

You May Also Like…

Scientists Find the First Ice Core From the European Alps That Dates Back to the Last Ice Age

Scientists Find the First Ice Core From the European Alps That Dates Back to the Last Ice Age

The new study, published in the June issue of PNAS Nexus, examines a 40-meter long ice core from Mont Blanc’s Dôme du Goûter. Using radiocarbon dating techniques, the research team found that the glacier provides an intact record of aerosols and climate dating back at least 12,000 years. Aerosols are small droplets and particles in the air such as desert dust, sea salts, sulfur from volcanic eruptions, soot from forest fires, as well as pollutants and other emissions from human activities.

A New, Detailed Analysis of the Benefits and Trade-offs of Urban Street Trees in Las Vegas

A New, Detailed Analysis of the Benefits and Trade-offs of Urban Street Trees in Las Vegas

Earth is hotter than it has been in 125,000 years, scientists say, and Las Vegas continues to break temperature records. Planting and preserving the city’s street trees is one method that brings many benefits, from the cool air of their shade to their ability to store carbon. Now, a new study takes a deeper look at just how much trees can offer Sin City, as well as the water tradeoffs inherent in growing trees in a desert.

Desert Lichen Offers New Evidence for the Possibility of Life on Other Planets

Desert Lichen Offers New Evidence for the Possibility of Life on Other Planets

The question of whether Earth is alone in harboring life has captivated humanity for millennia. In recent years, scientists have turned to Earth-like planets in other solar systems that may show the most promise, but many revolve around stars that emit much stronger solar radiation than our own. Now, a new study offers evidence that life as we know it may be able to thrive on those Earth-like exoplanets.

Share This